Review of Lunar Polar Illumination

Ben Bussey and Angela Stickle Space Exploration Sector The Johns Hopkins University Applied Physics Laboratory

> ben.bussey@jhuapl.edu 301-906-1174

angela.stickle@jhuapl.edu

Lunar Poles

- Spin axis 1.5° from the perpendicular to the ecliptic plane results in special illumination conditions
- Permanently shadowed regions are cold traps (< 100K) and are possible locations of ice deposits
- First mention that permanent shadowed regions could exist was by Urey in his 1952 book The Planets

Clementine's View of the Poles

- Imaged each pole every 10 hours for 71 days
- Data collected during winter in the southern hemisphere
- High resolution data collected at 15 m/pixel
- Shoemaker 1994 Science paper estimated at least 30,000 km² of shadow in the south polar region

Ben Bussey / Angela Stickle JHU/APL

Quantitative Illumination Map

- No constant illumination
- A,B,C lit more than 70% of a winter day
- A&B collectively lit > 98%

800

North-Pole Illumination Map

Bussey et al., (2005) Nature V434 842

Four places on the rim of Peary crater were constantly illuminated during a lunar summer day
All are in close proximity with permanently shadowed regions.

Earth-Based Radar

- Made from Goldstone data
- •150 m Spatial, 50 m vertical DEM
- Mapped locations of permanent shadow

Details in Margot et al (1999) Science V 284 1658-1660

Clementine stereo

Orbit 191

Radar topography

Clementine stereo

Orbit 243

Radar topography

Clementine UVVIS

Simulated Simulations

- Crater profiles for lunar craters are known (e.g. Pike, 1977).
- Investigate amount of permanent shadow as a function of size, latitude and season.

Topography simulations 0 0 0

 $S = (0.9465 \times D) + (0.0202 \times \theta^2) - (0.009258 \times \theta \times D) - 78.06$

- Craters in the range 2.5 to 20 km were studied
- Craters placed every 1° latitude from 70° to 90°
- A series of runs are conducted to calculate the extent of permanent shadow

Permanent Shadow

- 1000's km² of permanent shadow in simple craters at both poles
 - Permanent shadow exists in simple craters at long distances from the pole
 - Represent possible locations of volatile deposits

Bussey et al., (2003) GRL V30 No. 6, 1278-1281

Kaguya

- No 100% illuminated areas
- Both poles have locations that receive illumination > 80% of the time
- See Noda et al., (2008) GRL V35 L24203

Kaguya-Clementine Comparison

Earth & Sun Shadows

- Earth Shadowed
 Blue & Red
- Sun Shadowed
 - Yellow & Red

LRO

LOLA

Region	North	South
~80°	12866	16055
>82.5°	8881	12202
>85°	4764	7024
>87.5°	1769	3660
$>87.5^{\circ} > 1 \text{ km}^2$	1665	3632
$>87.5^{\circ} > 2 \text{ km}^2$	1496	3588
$>87.5^{\circ} > 5 \text{ km}^2$	1236	3516
$>87.5^{\circ} > 10 \text{ km}^2$	983	3397
$>87.5^{\circ} > 20 \text{ km}^2$	575	3306
$>87.5^{\circ} > 50 \text{ km}^2$	523	3187

From Mazarico et al., Icarus, 2011

LROC

E.J. Speyerer, M.S. Robinson/Icarus 222 (2013) 122-136

E.J. Speyerer, M.S. Robinson/Icarus 222 (2013) 122-136

LOLA & LROC

58 - 65° S

From McGovern et al., Icarus, 2013

LOLA & LROC

62.2° N

63.5° N

64.9° N

From McGovern et al., Icarus, 2013

Polar Resources Ice Mining Experiment-1 (PRIME-1)

Space Technology is developing technologies for the collection, processing, storing and use of material found or manufactured on other astronomical objects.

- Consists of two high-TRL instruments a Mass Spectrometer observing lunar operations (MSolo) and The Regolith and Ice Drill for Exploring New Terrain (TRIDENT)
 - Will fly to the south pole in late 2022 on an Intuitive Machines CLPS delivery

NASA is utilizing APL's expertise in precision illumination and thermal simulations to help select the best landing site for mission success

Longest period of continuous sunlight, starting January 2, 2023

LOLA 25m DEM to 80S

Simulated Lighting Conditions – 25 m DEM 27-Dec-2022 00:00:00

Valley Ridge Region

LOLA 25m DEM to 80S

Ice Stability

Image courtesy of Matt Siegler, SMU

Valley Ridge Region,-89.6°, -125.4°

Valley Ridge Region -89.6°, -125.4°

LOLA 25m DEM to 80S

1	5	9	13
2	6	10	14
3	7	11	15
4	8	12	16

		-		• •
May tota	consecutive	dove	cum	light
IVIAN IUIA		uavs	Sull	11211
		2		\circ

10	10	10	5
5	10	10	10
10	10	10	7
10	4	10	10

10	10	10	5
5	10	10	10
10	10	10	7
10	4	10	10

Jan

Feb

JGR Planets, Volume: 124, Issue: 10, Pages: 2505-2521, First published: 14 August 2019, DOI: (10.1029/2019JE006028)